
Implementing the cubic and adaptive cubic
regularization algorithms

Corinne Jones

June 8, 2016

1 Introduction

Recent work by Nesterov and Polyak (2006) and Cartis et al. (2011) shows that with slight
modifications to the well-known Newton’s method, global convergence to second-order crit-
ical points of an unconstrained optimization problem can be achieved under certain con-
ditions. The main necessary condition is that the Hessian be Lipschitz continuous. This
convergence guarantee is quite appealing, as we fairly frequently encounter problems with
many saddle points (e.g., in some formulations of the matrix completion problem) where we
want to be able to ensure that we converge to a minimum. Other recent work on this issue
includes that by Anandkumar and Ge (2016), who use cubic regularization as part of their
algorithm that converges to third order local optima.

No open source code exists online for either the cubic or adaptive cubic regularization
algorithms. In addition, Nesterov and Polyak (2006) note at the end of their paper that
“Indeed, it could be too ambitious to derive from our purely theoretical results any conclusion
on the practical efficiency of corresponding algorithmic implementations”. While Cartis et al.
(2011) do perform some experiments, they do not use an estimate of the Hessian, which they
tout as one of the benefits of adaptive cubic regularization, nor do they compare their results
to those of other commonly used algorithms.

The goal of this project is to provide an open-source version of both cubic and adaptive
cubic regularization, to test these algorithms on a variety of problems, and compare them
with other commonly used algorithms. To that end, I first describe the cubic and adaptive
cubic regularization algorithms in the next section. Following this, I present and discuss re-
sults from running the algorithms on a variety of problems. The code for the implementations
may be found on GitHub at https://github.com/cjones6/cubic_reg.

2 Background

In this section I will briefly describe the cubic and adaptive cubic regularization algorithms.
Following this I will provide details as to how to solve the cubic subproblem.

1



2.1 Overview of algorithms

The well-known algorithm Newton’s method minimizes a second-order approximation to a
function f : Rn → R at each iteration. More specifically, at each iteration, if the algorithm
is currently at point xk then it next moves to the point

xk+1 = argminy

[
f(xk) + 〈f ′(xk), y − xk〉+

1

2
〈f ′′(xk)(y − xk), y − xk〉

]
,

i.e., the update rule is xk+1 = xk − [f ′′(xk)]
−1f ′(xk). The downsides of this algorithm are

that the Hessian will not always be invertible, and that the algorithm could converge to
a saddle point or a local maximum. While an abundance of work exists that evades the
invertibility problem, Nesterov and Polyak (2006) provide one of the first analyses of the
global convergence of an algorithm related to Newton’s method.

The idea behind the cubic regularization algorithm of Nesterov and Polyak (2006) is that
we can upper bound our function f by a cubic function, and minimize this at every step.
Specifically, assuming the Hessian of our function f is Lipschitz continuous with constant L,
we can set

xk+1 = argminy

[
f(xk) + 〈f ′(xk), y − xk〉+

1

2
〈f ′′(xk)(y − xk), y − xk〉+

M

6
‖y − x‖3

]
,

where M is either the Lipschitz constant or an approximation of it found via line search.
The line search finds a value of M such that the function value at the next point will be
below the the value at the minimizer of the current cubic approximation. Solving this cubic
subproblem at each step guarantees that the objective function value will decrease unless
the algorithm is at a minimum or possibly a degenerate saddle point.

Similarly to cubic regularization, adaptive cubic regularization also solves a third order
approximation to the function f at each iteration. Letting Bk be a symmetric approximation
to the Hessian at xk, Cartis et al. (2011) use the model

mk(y) = f(xk) + 〈f ′(xk), y − xk〉+
1

2
〈B(xk)(y − xk), y − xk〉+

1

3
σk‖y − x‖3,

where σk is a line search parameter updated at every iteration depending on how well the
proposed update (the minimizer of mk(y)) does. If the minimizer y∗k of mk(y) is such that the

ratio ρk =
f(xk)−f(y∗k)
f(xk)−mk(y∗k)

is larger than some constant, then we will accept the update, move to

y∗k, and decrease the value of σk. Intuitively, this says that we move if the amount we would
decrease is a significant fraction of the expected decrease based on the approximation mk.
If this fraction is not large enough we stay where we are and increase the value of σk until
we find a value y∗k that makes ρk large enough.

2.2 Solving the cubic subproblem

Both the cubic and adaptive cubic regularization algorithms require solving a cubic sub-
problem at each iteration. At first glance this task appears difficult, as the problem is

2



non-convex. However, it turns out that for any M > 0 this subproblem is equivalent to the
convex problem

sup
r∈D

[
−1

2
〈
(
H +

Mr

2
I

)−1
g, g〉 − M

12
r3

]
,

where D = {r ∈ R : H + M
2
rI � 0, r ≥ 0} and g and H are the gradient and Hessian,

respectively, at the current point.
This new problem is similar to a commonly-encountered problem in trust region methods

discussed in Conn et al. (2000). An interior solution to our problem satisfies

r = ‖
(
H +

Mr

2
I

)−1
g‖, r ≥ 2

M
(−λn(H))+, (1)

where λn(H) is the smallest eigenvalue of H. In contrast, the trust region problems have
a constant left-hand side of the equation on the left. Note that we can rewrite r =

‖
(
H + Mr

2
I
)−1

g‖ as

r2 =
N∑
i=1

g̃2i
(λi + M

2
r)2
≡ ψ(r),

where λi is the ith largest eigenvalue of H and g̃i is ith element of Hg. Hence, the right
hand side of this equation has poles at −λi for each i unless g̃i = 0. Moreover, the right
hand side is decreasing to zero as r increases when M

2
r > −λi. Therefore, there are a couple

of possible cases to consider for the cubic subproblem.
The hard case occurs when g̃n = 0 and λn = 0. In this case, we know that one solution

is the limiting value of −
(
H + Mr

2
I
)+
g as r → 2

M
λn, which I will denote by scri as is done

in Conn et al. (2000). However, H + Mr
2
I is not invertible, so there are also other solutions,

which are of the form (H + Mλn
2
I)(scri + αun) = −g for some constant α, where un is

the eigenvector corresponding to λn. To choose the correct α, we find the one satisfying
‖scri + αun‖2 = − 2

M
λ1. In all other cases ψ(r) → ∞ as r → max(−λn, 0) and approaches

zero as r → ∞. Hence, there is a unique solution to the equation r2 = ψ(r) subject to
r ≥ 2

M
(−λn(H))+.

To solve the problem in equation 1 in the nice case, we can use Newton-Raphson with
some added safeguards on the equation

φ(λ) ≡ 1

‖s(λ)‖2
− M

2λ
= 0, (2)

where λ = M
2
r and s(λ) = (H + λI)−1 g. Recall that the Newton-Raphson updates are

λ+ = λ− φ(λ)
φ′(λ)

. In our case we have φ′(λ) = − 〈s(λ),∇λs(λ)〉‖s(λ)‖32
+ M

2λ2
where ∇λs(λ) = −H(λ)−1s(λ).

The analysis of the trust region subproblem in Conn et al. (2000) largely carries over to
this problem, with the exception of the convergence criteria. In particular, we can apply
Algorithm 7.3.6 from Conn et al. (2000) after modifying the Newton-Raphson updates and
adding a small value to λ if λ = 0 at the beginning.

Algorithm 7.3.6 from Conn et al. (2000) requires finding the minimum eigenvalue of H
so that we can start in a region where Newton-Raphson will converge to the unique solution

3



of our problem. An alternative to this is Algorithm 7.3.4 from Conn et al. (2000), which
does not require this and instead iteratively updates bounds on the region of convergence.
However, I did not implement this because it is rather involved and I did not have time.

3 Results

I implemented both the cubic and adaptive cubic regularization algorithms in Python and
the code may be found on GitHub at https://github.com/cjones6/cubic_reg. The main
decision I had to make was which algorithm to use to solve the cubic subproblem, and for
this I adapted Algorithm 7.3.6 from Conn et al. (2000). The default parameter settings and
line search methods mostly come from the suggestions in Nesterov and Polyak (2006) and
Cartis et al. (2011). However, Nesterov and Polyak (2006) do not specify how to set L0, the
initial value for M when L is unknown. As we only need a lower bound on this value, I set it
to be an estimate of L at the initial point. I also allow the user to choose the Hessian update
method when running adaptive cubic regularization; the choices are “exact”, “rank one”
(the symmetric rank one update), and “broyden” (the Powell-symmetric-Broyden update).

The next subsection describes the initial testing of the algorithms and demonstrates that
they work. Following that I display results from running the algorithms on more complicated
functions from the CUTEr test set of Gould et al. (2003).

3.1 Initial testing

Initial unit testing provided promising results, with the cubic regularization algorithm con-
verging to the minimum of convex function f(x, y) = x2 + y2 in one step when starting at
(2,2). Adaptive cubic regularization took five steps before converging. For both of these
algorithms I used a convergence tolerance on the gradient of 10−4.

Next, I ran the algorithms on a more complicated and non-convex function, f(x, y) =
−(x2 + 3y2)e1−x

2−y2 . Figure 1a displays the paths that cubic regularization, adaptive cubic
regularization, gradient descent, and Newton’s algorithm take. Newton’s method fails to
converge to one of the local minima, while both cubic and adaptive cubic regularization do
converge. Figure 1b, a quiver plot, displays the next step the cubic regularization algorithm
will take based on where it currently is. The points (0,1) and (0, -1) are the local minima.

One additional necessary test was whether the algorithm performed properly when it
reached an instance of the hard case of the cubic subproblem. Nesterov and Polyak (2006)
describe one such instance in their Example 4 on page 200. For this problem, which is
included in the unit tests code, the actual solution is (1,

√
3) and the code returns the

correct answer up to 15 decimal places!

3.2 Results on subset of the CUTEr test set

In addition to running cubic and adaptive cubic regularization on the functions discussed
above, I also ran the algorithms on a subset of the functions using a Python interface1 to the

1http://fides.fe.uni-lj.si/ arpadb/software-pycuter.html

4



(a) Solution path of algorithms

(b) Direction of next location
of cubic regularization when
starting at various points

Figure 1: Results from minimizing the function f(x) = −(x2 + 3y2)e1−x
2−y2

CUTEr test set of Gould et al. (2003). These functions and their starting points are listed
in the Appendix (located in a separate file) in Tables 6 and 7.

For sake of comparison with Cartis et al. (2011), I set the dimension of the problems
on which I tested the algorithms to be 100 and used the same parameter values and con-
vergence criterion (norm of the gradient less than 10−5). The results I report for adaptive
cubic regularization are from running it using Powell-symmetric-Broyden updates, as using
an approximation to the Hessian is supposedly one of the main benefits of adaptive cubic
regularization. This is one main difference between my implementation and that of Car-
tis et al. (2011). The other main difference is that my convergence criterion for the cubic
subproblem is slightly different.

The convergence results for cubic regularization, adaptive cubic regularization, conjugate
gradient, Newton-conjugate gradient, and L-BFGS are displayed in Tables 1 through 5. The
latter three algorithms were run using the SciPy implementations.

Examining Table 1, we can see that there are several times that cubic regularization and
adaptive cubic regularization did not converge after 10,000 iterations. Given that these are
very non-convex problems for which the Hessian may not be globally Lipschitz continuous,
this is not too surprising. However, on the BROWNAL problem, adaptive cubic regular-
ization actually got close to the optimum; it reached a function value of 0.00011 when the
optimal value was zero. Aside from these cases, cubic regularization tends to be competitive
with the other algorithms in terms of the number of outer iterations (defined by each time
the algorithms take a step). Similarly, the number of function and gradient evaluations,
shown in Tables 2 and 3, also seem to be competitive on most of the problems. On the
other hand, adaptive cubic regularization using Broyden updates seems to take many more
iterations than cubic regularization, making it not competitive.

5



Table 1: Number of iterations until convergence for each problem by algorithm for N = 100.
Asterisks denote a failure to converge after 10,000 iterations.

Cubic Reg Adaptive CG Newton-CG L-BFGS

BROWNAL 7 10000* 2 2 8
BRYBND 49 878 50 17 60
DQDRTIC 1 6 5 7 11
FLETCHBV 10000* 10000* 2676 10000* 117
FLETCHCR 382 2709 1* 190 496
GENHUMPS 10000* 10000* 1669 9591 973
GENROSE 190 1065 474 91 261
MANCINO 71 85 10 7 10
MOREBV 1 2 311 5 92
SENSORS 22 155 27 20 19

Table 2: Number of function evaluations for each problem by algorithm for N = 100.
Asterisks denote a failure to converge after 10,000 iterations.

Cubic Reg Adaptive CG Newton-CG L-BFGS

BROWNAL 15 10017* 30 4 13
BRYBND 99 922 88 20 65
DQDRTIC 5 8 13 9 17
FLETCHBV 20001* 10002* 4366 15030* 165
FLETCHCR 765 3069 17* 221 597
GENHUMPS 20005* 10010* 2775 10251 1321
GENROSE 381 1217 732 129 328
MANCINO 143 103 22 9 15
MOREBV 3 4 467 7 97
SENSORS 48 162 54 28 22

One of the main differences between cubic regularization and the other algorithms is
the number of necessary Hessian evaluations, which are displayed in Table 4. As we can
see, cubic regularization performs many more Hessian evaluations than Newton-CG, which
definitely slows it down. On the other hand, adaptive cubic regularization only evaluates
the Hessian during initialization (in part for input checking) and when solving the cubic
subproblem fails for the approximate Hessian.

Since adaptive cubic regularization evaluates the Hessian so many fewer times, we might
expect that its running time would be smaller than that of cubic regularization on these
problems of size N = 100. However, as we can see from Table 5, that is clearly not the case,
and this is due to the fact that it takes so many more iterations to converge. This is likely
why Cartis et al. (2011) did not present results from using an approximate Hessian. It would
be interesting though to see if on even larger problems adaptive cubic regularization would
take less time to converge.

Note that since the SciPy algorithms are highly optimized and are probably not written

6



Table 3: Number of gradient evaluations for each problem by algorithm for N = 100.
Asterisks denote a failure to converge after 10,000 iterations.

Cubic Reg Adaptive CG Newton-CG L-BFGS

BROWNAL 9 10002* 17 4 12
BRYBND 51 880 87 35 64
DQDRTIC 4 8 12 14 16
FLETCHBV 10002* 10002* 4353 25024* 164
FLETCHCR 384 2711 4* 409 596
GENHUMPS 10002* 10002* 2774 19837 1320
GENROSE 192 1067 731 218 327
MANCINO 73 87 21 14 14
MOREBV 3 4 466 10 96
SENSORS 24 157 53 46 21

Table 4: Number of Hessian evaluations for each problem by algorithm for N = 100.
Asterisks denote a failure to converge after 10,000 iterations.

Cubic Reg Adaptive CG Newton-CG L-BFGS

BROWNAL 11 2* 0 2 0
BRYBND 53 4 0 17 0
DQDRTIC 6 2 0 7 0
FLETCHBV 10004* 2 0 10000* 0
FLETCHCR 386 3 0 190 0
GENHUMPS 10004* 2 0 9591 0
GENROSE 194 3 0 91 0
MANCINO 75 3 0 7 0
MOREBV 5 2 0 5 0
SENSORS 26 3 0 20 0

in pure Python, it is not fair to compare the running times of my implementations of the
cubic regularization algorithms to those of the algorithms in SciPy. Ignoring the fact that
they are so much slower, it appears as though cubic regularization is competitive with the
other algorithms, while adaptive cubic regularization using Broyden updates is not. It is
interesting to note that the results presented here are very different from those of Cartis
et al. (2011) in terms of the number of iterations until convergence for these problems, with
some being significantly lower and some being significantly higher.

4 Conclusion

With the cubic regularization algorithm of Nesterov and Polyak (2006) and the adaptive
cubic regularization algorithm of Cartis et al. (2011) being seemingly underutilized given
their nice properties, it seemed appropriate to provide an open-source implementation of
them for others to discover and use. In this report I demonstrated that my implementations

7



Table 5: Time until convergence for each problem by algorithm for N = 100. Asterisks
denote a failure to converge after 10,000 iterations.

Cubic Reg Adaptive CG Newton-CG L-BFGS

BROWNAL 0.509 79.692* 0.006 0.124 0.005
BRYBND 0.535 8.815 0.016 0.011 0.013
DQDRTIC 0.006 0.084 0.003 0.006 0.003
FLETCHBV 39.795* 143.715* 0.270 3.308* 0.010
FLETCHCR 6.305 20.934 0.004 0.084* 0.025
GENHUMPS 28.232* 123.205* 0.287 5.259 0.133
GENROSE 1.619 13.759 0.043 0.048 0.020
MANCINO 6.439 28.034 0.112 0.570 0.085
MOREBV 0.006 0.019 0.026 0.026 0.011
SENSORS 0.511 2.685 0.351 0.448 0.114

do work and I compared the number of iterations, number of function, gradient, and Hessian
evaluations, and their running times on ten different functions to those of other common
algorithms. The results suggested that cubic regularization performs competitively with the
others, while adaptive cubic regularization using a Powell-symmetric-Broyden update for the
Hessian is much slower.

Future work related to these algorithms could involve making the implementations more
efficient. This could mean rewriting them in a faster language such as C or Fortran and/or
using a different algorithm to solve the cubic subproblem. In addition, it would also be
interesting to build on this code to implement the algorithm of Anandkumar and Ge (2016).

References

Anandkumar, A. and Ge, R. (2016). Efficient approaches for escaping higher order saddle
points in non-convex optimization. arXiv preprint arXiv:1602.05908.

Cartis, C., Gould, N. I., and Toint, P. L. (2011). Adaptive cubic regularisation methods
for unconstrained optimization. part i: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295.

Conn, A. R., Gould, N. I., and Toint, P. L. (2000). Trust region methods, volume 1. Siam.

Gould, N. I., Orban, D., and Toint, P. L. (2003). CUTEr and SifDec: A constrained and un-
constrained testing environment, revisited. ACM Transactions on Mathematical Software
(TOMS), 29(4):373–394.

Nesterov, Y. and Polyak, B. T. (2006). Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205.

8



A Additional tables

Table 6: Functions from the CUTEr test set of Gould et al. (2003) on which I tested cubic
and adaptive cubic regularization for N = 100

Name Function

Brownal
∑N−1

i=1

(
xi +

∑N
j=1 xj − (N + 1)

)2
+ (
∏N

j=1 xj − 1)2

Brybnd
∑N

i=1

(
xi(2 + 5x2i ) + 1−

∑
j∈Ji xj(1 + xj)

)2
where Ji ≡ {j ∈ 1, 2, . . . , N : j 6= i and max(1, i− 5) ≤ j ≤ min(N, i+ µ)}

Dqdrtic
∑N−2

i=1

(
100x2i+1 + 100x2i+2 + x2i

)
Fletchbv 0.5x21 +

∑N−1
i=1 0.5(xi − xi+1)

2 + 0.5x2N +
∑N

i=1

(
−1− 2 (N + 1)2

)
xi −

∑N
i=1(cos(xi)(N + 1)2

Fletchcr
∑N−1

i=1 100(xi+1 − xi + 1− x2i )2
Genhumps

∑N−1
i=1

(
sin2(2xi) sin2(2xi+1) + 0.05(x2i + x2i+1)

)
Genrose 1 +

∑N
i=2 100 (xi − xi−1)2 +

∑N
i=2(xi − 1)2

Mancino
∑N

i=1[1400xi + (i− 50)3 +
∑N

j=1 vij((sin(log(vij)))
5 + cos(log(vij)))

5)]2

where vij =
√
x2i + i

j

Morebv
∑N

i=1

(
2xi − xi−1 − xi+1 + 1

2

(
1

N+1

)2
(xi + i

N+1
+ 1)3

)2
where x0 ≡ 0, xN+1 ≡ 0

Sensors
∑N

i,j=1− [sin (xi) sin (xj) sin (xi − xj)]2

Table 7: Starting points for the functions from the CUTEr test set of Gould et al. (2003)
on which I tested cubic and adaptive cubic regularization for N = 100. Unless otherwise
specified, the values are for i = 1, . . . , N .

Name Staring point
Brownal xi = 1

2

Brybnd xi = −1
Dqdrtic xi = 3
Fletchbv xi = i

N+1

Fletchcr xi = 0
Genhumps x1 = −506, xi = 506.2, i 6= 1
Genrose xi = 1

N+1

Mancino xi = −8.710996× 10−4((i− 50)3 +
∑N

j=1

√
i
j
((sin(log(

√
i
j
)))5 + (cos(log(

√
i
j
)))5))

Morebv xi = i
N+1

(
i

N+1
− 1
)

Sensors xi = 1
N

9


